This Blog is about a variety of topics that I’m interested in. My top posts are listed below. I also do regular posts on Audiobooks I’ve listened to and notes from conferences I attend.
In my previous article I covered why Light Metro is the best technology of the next major stage of Auckland’s train network. Here I present a couple of lines that could be the basis for a future network.
The lines are designed to form a mesh an enable transfers (especially in the CBD) but are of course just ideas. One problem I have encountered is steep sections of track, these will require the track to smooth our the height differences and for trains able to handle climbs of around 5%.
I am estimating costs as $300m/km for elevated sections and $1b/km for underground sections. Hence I have used elevated line wherever possible.
Light Metro Technology
As outlined in my previous article Light Metro is Automated, Grade Separated with Short Trains and High Frequencies. It is well suited to Auckland where requirements exceed Light Rail but a full metro would be overkill.
The key advantages of Light Metro over street running light rail is it’s high capacity, frequency and higher speed. Attempting to push Light Rail beyond it’s natural sweet-spot result in a grade-separated system that costs as much as Light Metro but is worse and often costs more to run.
The below table shows the capacity of a Light Metro line (in each direction). For Auckland the stations outside the CBD could be serviced by buses to further increase coverage area. Trains could start at short length and frequency increased as high as possible before longer trains should be used.
Headway / Trains per Hour
2 Cars
3 Cars
4 Cars
6 Cars
5 min / 12 tph
2,400
3,600
4,800
7,200
3 min / 20 tph
4,000
6,000
8,000
12,000
2 min / 30 tph
6,000
9,000
12,000
18,000
90 sec / 40 tph
8,000
12,000
16,000
24,000
Max Passengers per hour per direction
If the system is run with 4-car trains then each has the capacity over double one of the major Auckland motorways such as the Western or Southern.
Line 1 – A North/South Metro Line from Albany to the Airport
This line would upgrade the Northern Busway on the North Shore, run under the CBD and connect to the Airport in the South.
The line would be grade separated above the road as much as possible since this is cheaper than under-grounding. It would be underground though the central city however.
Total length would be around 36km of which around 5.5 would be underground. Cost would be something like $15b
Northern Section
This would start at the exiting Albany bus centre and follow the Northern busway to Akoranga station. It would then go along the shore until roughly opposite Sulphur point where it would either go in a tunnel or bridge over the Harbour to Wynyard Quarter. Stations would be Albany, Rosedale, Constellation, Sunnynook, Smales Farm, Akoranga
The Northern Busway should be kept South of Akoranga Station for use by buses from Takapuna, Northcote and Brikenhead. This would give the system more capacity and is easier than those people transferring from a bus to a train for such a short ride.
Travel time from Albany to the Te Waihorotiu Station (Aotea) should hopefully be around 25 minutes.
City Section
Once over the Harbour the line should head underground and have a series of stops in the Central City. I would suggest
Central Wynyard Quarter near Madden St
Near Les Mills on Victoria St West
Te Waihorotiu Station (Aotea)
University / Symonds St
The Te Waihorotiu CRL station is apparently already future-proofed with space for a North/South line. The station will effectively be the centre of the Auckland System. There should also be a surface Light Rail line nearby on Queen Street.
The University station would be quite deep and probably be a an elevator-only station.
Southern Section
South of Grafton Valley the line would go under the domain before going through Newmarket. The line could either be above or below ground though Newmarket but will be above ground once it reach Manukau Road.
Update: Feedback has convinced me the line should have a stop under Park Road near the Hospital and another at the bottom of Carton Gore Rd.
I don’t think having a station for the Museum is justified but there could also be a station at the North of Newmarket near Sarawia St. There should be at least one station in Central Newmarket near the existing Train station to allow transfers
South of Newmarket the line will travel above Manukau Rd and continue South through Onehunga and Mangere Bridge.
Possible stations could be (at roughly 1km intervals):
Near corner Manukau and Great South Road
Corner of Manukau Rd and Ranfurly Road
Corner of Manukau Rd and Queen Mary Ave (Alexandra Park, Green Lane West Rd)
Corner of Manukau and Pah Roads
Royal Oak Mall
Corner of Manukau Rd and Trafalgar St
Onehunga Mall Road near Grey Street
Onehunga Station
Mangere Bridge Village
Corner of McKenzie and Millar Rd
Corner of Bader Dr and Idlewild Ave
Mangere Town Centre (see below)
Airport Drive Area
Airport Terminal
The Southern Section would have roughly 16 stations and take over 18km and would take around 30 minutes to cover from the Airport to Te Waihorotiu/Aoetea Station.
Previous proposals have followed the motorway but I’ve switched this to following roads inside the suburb of Mangere Bridge and giving the suburb 3 stations with the Millar Rd one having good connectivity to Favona.
The Mangere Town Centre station would be a branch off the Bader Drive station. It could be run as a shuttle. Eventually the line could be extended East along Buckland Road to Papatoetoe Station then North to Otara and/or South to Manukau
Line 2: North-West Metro Line from Westgate to the City
This line is intended to fill the gaps to the North of the existing Western Rail Line and use the Motorway corridor. Closer to town it will go above Great South Rd and Karangahape Rd.
It will then do an above-ground spiral around the city to improve coverage and transfers.
Total length would be around 20km and all above ground. Cost would be something like $6b
Western Section
This would run from Westgate to Karangahape Road mainly along the North Western Motorway and Great North Road (GNR). It would be roughly 16km long and 100% overhead.
Stops could be: Westgate Shopping Centre, Royal Road, Huruhuru Road, Lincoln Road, Te Atatu Road, Rosebank, Point Chevalier Shops, Zoo / MOTAT, Corner GNR & Bond St, Corner GNR & Williamson Ave, Corner GNR and Newton Rd, St Kevins Arcade.
City Section
The St Kevins Arcade stop on Karangahape Rd should be designed to allow people to easily transfer to either the Dominion Rd Light rail on Queen St or the Karanga-a-Hape CRL station.
After the St Kevins Arcade stop the line continues east along Karangahape Rd and then turns down Symonds Street, Anzac Ave, Customs Street and then across the Viaduct Basin to Madden street.
St Kevins Arcade
Symonds St near City Rd
Symonds St near the Engineering School
Symond St near Parliament St
Customs St near Britomart
Customs St West near Market lane
Madden St near Daldy St
The line has seven stations in the CBD and intersects all the other lines twice. This enhances the coverage of the other lines via transfers. Extra stations are also a lot easier and cheaper to build on this line than the underground lines.
eg Someone coming from the North Shore on the N/S Metro could get off at Wynyard Station and Transfer to the Western Metro Line. They would then only have to wait a couple of minutes to catch a train to the Britomart station.
Dominion Road Light Rail
This has been covered elsewhere in detail but building a Lower Queen St to SH20 surface Light rail line fills a gap in coverage and provides additional capacity along Queen Street fairly cheaply.
The line would be mostly separate from car traffic on dedicated lanes in the Center of Dominion Rd and Queen Street. Length would be 8km.
Followups Lines
The above two lines probably give Central Auckland significant metro coverage to last many years. Future lines in Ponsonby, Sandringham, Mt Eden, The CDB, and Newmarket would probably be best served by cheaper street running light rail.
Further out Light Metro may suit the longer distances. Lines or Branches like:
Te Atatu
Point Chev to Onehunga
Mangere to Papatoetoe
Papatoetoe to Otara and then on to Botany
Manukau to Papatotoe, Howick and Manurewa
Takapuna
Orewa
Areas like Remuera could use either technology or just retain bus-based feeders
Questions
Q: Why not Light Rail?
A: Street running light rail is suitable for many sections but it lacks the higher capacity and speed of Light Metro. This is need for long busy routes like the link to the North Shore. If you Grade Separate the Light Rail then you end up spending as much as Light Metro for an inferior product.
However Light Rail is suitable for many routes that don’t justify the extra speed/capacity. This includes Dominion Road and additional filler routes around the CBD that need a step-up from buses.
Q: Why not Heavy Rail?
A: A System compatible with New Zealand’s current service would not work. It would not be able to handle turns, climbs and automated operation without extremely expensive changes which would lose all compatibility. The existing routes (including the CRL) are already full so no savings via reuse is gained.
Q: Why elevated instead of tunneled?
A: Because it is cheaper. Cost for tunneled is usually at least twice that of overhead and can often be more. Yes, not everybody likes the look of overhead lines but going underground can increase the cost by enough to derail the project.
Q: What about steep sections?
A: Certain section of the lines are quite steep due to Auckland’s terrain. This may cause a problem with the route. Light Metro can handle steep slopes than Heavy Rail but handling it may require additional measure like altering the height of lines so they smooth out slopes.
As of 2024 the Auckland Light Rail proposal has died. What started as a cheap surface light rail running down the centre of roads became a largely underground system and the cost spiral to at least $15 billion.
In this post I will outline why I think that medium-distance high-traffic routes should instead be built using Automated Light Metro technology.
In a followup post I will suggest a possible 2 line backbone for Auckland. Combining Light Metro with the existing heavy-rail system, some street-running light rail and buses this could be a system which could be built for less than the cost of the governments light-rail proposals and leave lots of room to be extended
Much as motorway project are planned years in advance this could be something that is largely designed and ready to be built when funding and political will are both available.
What is Automated Light Metro?
Automated Light Metro is what Wikipedia classifies as a Medium-capacity rail system , it has greater capacity than light rail but less than a Full Metro System.
For this article will be based the Hitachi Rail Italy Driverless Metro but there are similar systems from other vendors. The Hitachi Rail Italy Driverless Metro system is deployed in several metros including Copenhagen, Brescia, Milan and Taipei.
The main characteristics of the system are:
Automated (Driverless) Operation
Grade Separated – Mainly overhead
Short trains ( 30 – 100m )
Trains up to every few minutes (or less).
Large capacity of passengers per hour
Platform Screen Doors
Off the shelf Solution
Automated Operation
An important part of the system is that the trains are driverless. Only around 4 people in a control room are needed to run a whole system (which could be 100 trains). Automated operation allows trains to be scheduled close together and also makes it cheap to run lots of trains even off-peak. A train every 10 minutes at 1am for instance.
Grade Separation – Overhead vs Underground
Grade Separation means that there are no crossings of the track. It either runs underground or overhead. This means the track can’t be blocked and is basically required for automated operation.
I’m advocating that lines should be overhead whenever possible. The main advantage of this is lower cost (a third to a half of underground), speed of construction and in some cases easier access to stations.
While some people don’t like the look of overhead lines these will be running on existing motorway or road corridors. Spending billions to put the lines underground is a waste of money that can be used to build more tracks (or result in nothing being constructed at all due to cost)
I think people who worry about the look of overhead rail forget how ugly 4-5 lanes of car-filled roads really are. Not to mention the noise and fumes.
Compare these shots of the Vancouver Skytrain running alongside roads.
Some underground track will probably be required for the CBD but in light of the high extra cost it should be minimised.
Short Trains
Compared to the existing Auckland trains the Light Metro cars are around half the length. This means a 4-car Light Metro train is around 52m vs 145m for a 6 car NZ AM Class train. However the denser loading and greater frequency means that the capacity is around the same.
The shorter Light Metro trains allow for smaller and cheaper stations. Platforms can be smaller and lifts and stairs can be sized for smaller “waves” of passengers.
Very Frequent Trains
Automated Light Metro Systems can have very short intervals (headway) between trains. 90 seconds is available off-the-shelf which allows 40 trains/hour in each direction. This means that passengers are not sitting around waiting for trains, you don’t even have to time when you turn up. See the video below for an example of what 90 seconds between trains feels like.
Because the trains are automated the cost of running trains half as long and twice as often is about the same. Whereas with conventional trains you need another driver and better training for the driver to handle tighter tolerances.
High Capacity
As stated above an Automated Light Metro can typically handle a train every 90 seconds or 40 trains per hour. A system like Hitachi Rail Italy Driverless Metro consists of 13m cars that can carry up to 100 people each (1/3 seated). These can be arranged in 2,3,4 or 6 car trains.
Headway / Trains per Hour
2 Cars
3 Cars
4 Cars
6 Cars
5 min / 12 tph
2,400
3,600
4,800
7,200
3 min / 20 tph
4,000
6,000
8,000
12,000
2 min / 30 tph
6,000
9,000
12,000
18,000
90 sec / 40 tph
8,000
12,000
16,000
24,000
Max Passengers per hour per direction
I would suggest the system be designed for 4 car trains ( 52m ) giving a maximum capacity of 400 people per train and 16,000 people per hour in each direction. That capacity would probably not be needed initially. So at the start 2 or 3 car trains could be run. Capacity can be increased by more frequent intervals and eventually longer trains.
Stations (especially the underground ones) should be even future-proofed to be upgradable to 6-car trains. But probably upgrade will be decades away. This means that relatively small and cheap stations can be built.
16,000 people/hour is equivalent to 10 lanes of cars, plus another 10 in the other direction. It exceeds the total number of people going South over the Auckland Harbour Bridge during the morning peak ( around 4500/h in buses and 9000/h in cars according to this article )
As a comparison the 66m Light Rail vehicles proposed for Dominion Road would be able to do around 8400 passengers per hour at a 3 minute headway. This would probably be the maximum for a street running system.
Platform Screen Doors
These are standard for all modern systems for safety.
Off the shelf Solution
A system such as Hitachi Rail Italy Driverless Metro is very much an industry standard. The system is operating successfully in several other cities around the world. This is much lower risk than going with a bespoke solution or unusual technology.
How does it compare to other options?
Advantages of Light Metro over Light Rail
The main advantage of Light Metro over Light Rail is capacity. While a basic street-running light rail is cheaper increasing that capacity beyond a certain point results in very long trains, cross roads being blocked and if full grade separation is introduced a big increase in cost to around what Light Metro would be.
Light Metro is also faster (see next section) and since it is a completed separated less prone to disruption.
However street-running light rail is cheaper and better suited for some routes that do not require high-capacity or speed and which have frequent stops. So routes covering local trips around Queen Street, Ponsonby and Parnell would be better suited to Light Rail.
Speed estimate
The Copenhagen Metro has an average speed (including stops) of 40km/h. This would point to a journey time of around 30 minutes from Westgate, The Airport or Albany to the CBD. The maximum speed is 80km/h so means that long sections could be practical. For example an 13km extension between Albany and Silverdale would take 10 minutes.
Partially Separated Light Rail usually averages at best than 30km/h and less than that in sections with many stops and/or crossings.
Relationship with exist Heavy rail
Light Metro will be to a different standard to the existing rail system. This is not a disadvantage since it will run on completely separate and new lines. The existing lines (including the CRL) are already at capacity in trains/hour so new lines will always be needed.
A system that is designed to be compatible with existing rail will probably unable to be automated and would have many other compromises.
More information.
Greater Auckland has pushed several articles about Light Metro previously
Covers the death of the Queen through to the first year of the new King’s reign. Semi-authorised. Recommended for those with interest in the topic. 4/5
Developing in the open, building a product with our users by Toby Bellwood
The Lagoon Story
At amazee.io . Is Lagoon Lead
What is Lagoon
Application to Kubernetes (docker build for customer, converts to k8s)
Docker based
Based on git workflows. Mostly Drupal, WordPress, PHP and NodeJS apps
Presets for the extra stuff like monitoring etc
Why
Cause Developers are too busy to do all that extra stuff
and it means Ops prefer if it was all automated away (the right way)
8 full-time team members
Knows a lot about application, not so much about the users (apart from Amazee.io)
Users: Hosting providers, Agencies, Developers
The Adopter: Someone using it for something else, weird use cases
Agencies: Need things to go out quickly, want automation, like documentation to be good. Often will need weird technologies cause customers wants that.
Developers: Just want it stabele. Only worried about one project at at time. Often OS minded
User Mindset
Building own tools using application
Do walking tours of the system, recorded zoom session
Use developer tools
Discord, Slack, Office Hours, Events, Easy Access to the team
Balance priorities
eg stuff customers will use even those Amazee won’t use
Engaging Upstream
Try to be a good participant, What they would want their customers to be
Encourage our teams to “contribute first”. Usually works well
Empowering the Team
Contribute under your own name
Participate in communities
How to stay Open Source forever?
Widening the Core Contributor Group
Learn from others in the Community. But most companies are not open sourcing the main component of their business.
Unsuccessful CNCF Sandbox project
Presenting n3n – A simple Peer to Peer VPN by Hamish Coleman
How to compares to other VPNs?
Peer to peer
NAT piecing
Not all packets need to go via the server
Distributed ethernet switch – gives extra features
Userspace except for tuntap driver which is pretty common
Low deployment requirements, easy to install in multiple environments
Relatively simple security, not super secure
History
Based off n2n (developed by the people who did ntop)
But they changed the license in October 2023
Decided to fork into a new project
First release of n3n in April 2024
Big change was they introduced a CLA (contributor licensing agreement)
CLAs have problems
Legal document
Needs real day, contributor hostile, asymmetry of power
Can lead to surprise relicencing
Alternatives to a CLA
Preserving Git history
Developer’s Certificate of Origin
Or it could be a CLA
Handling Changes
Don’t surprise your Volunteers
Don’t ignore your Volunteers
Do discuss with you Volunteers and bring them along
Alternatives
Wireguard – No NAT piercing
OpenVPN – Mostly client to Server. Also Too configurable
Why prefer
One simple access method (Speaker uses 4x OS)
A single access method
p2p avoid latency delays because local instances to talk directly
Goals
Protocol compatibility with n2n
Don’t break user visible APIs
Incrementally clean and improve codebase
How it works now
Supernode – Central co-ordination point, public IP, Some access control, Last-resort for packet forwarding
Communities – Nodes join, form a virtual segment
IP addresses
Can just run a DHCP server inside the network
Design
Tries to create a full mesh of nodes
Multiple Supernodes for metadata
Added a few features from n2n
INI file, Help text, Tidied up the CLI options and reduced options
Tried to make the defaults work better
Built in web server
Status page, jsonRPC, Socket interfaces, Monitoring/Stats
Current State of fork
Still young. Another contributor
Only soft announced. Growing base of awareness
Plans
IPv6
Optimise encryption/compression
Improve packaging and submit to distros
Test coverage
Better NAT piercing
Continue improve config experience
Selectable tuntap drivers
Mobile phone support hoped for but probably some distance away
Speaker’s uses for software
Manage mothers computer
Management interface for various servers around the world
From the stone age to silicon: The Dwarf Axe guide to the evolution of technology by Steven Ellis
What is a “Dwarf Axe” ?
Snowflakes vs Dwarf Axes
It’s an Axe that handled down and consistently delivers a service
Both the head ( software ) and the handle ( hardware ) are maintained and upgraded separately and must be maintained. Treated like the same platform even though it is quite different from what it was originally. Delivers the same services though
Keeps a fairly similar services. Same box on a organisation diagram
Home IT
Phones handed down to family members. Often not getting security patches anymore
Enterprise IT
Systems kept long past their expected lifetime
Maintained via virtualisation
What is wrong with a Big Axe?
Too Big to Fail
Billion dollar projects fail.
Alternatives
Virtual Machines – Running on Axe somewhere,
Containers – Something big to orchestrate the containers
Microservices – Also needs orchestration
Redesign the Axe
The cloud – It’s just someone else Axe
Options
Everything as a service. 3rd party services
Re-use has an end-of-life
Modern hardware should have better )and longer) hardware support
Ephemeral Abstraction
Run anywhere
Scale out not up
Avoid single points of failure
Focus on the service (not the infra or the platform)